
MARC

SP300_(MARC) 기술사양

- 본 규칙은 다양한 모터사이클의 안전성 및 공정한 경쟁, 연구와 개발을 목적으로 몇 가지 파츠를 개조 또는 변경할 자유를 주는 것과 동시에 비용과 파워를 억제하기 위한 규칙으로 제정한다.
- 본 규칙에 명시되어 허가된 것 외에는 엄격히 금지된다.
- 파츠 또는 시스템이 본 규칙의 어떤 조항에도 명시되어 있지 않은 경우 금지된다.
- SP300 차량에는 FIM 또는 KRTA 인증이 필요하다. 모든 머신은 자연흡기 방식이어야 한다. 모든 FI M 또는 KRTA인증 모터사이클은 인증된 머신에 이미 장착되어 있는 것을 제외하고 모든 점에서 기술 사양에 명시된 로드레이스 조건에 적합해야 한다.
- SP300 차량의 프론트, 리어, 측면에서 외관은(별도로 기술되지 않는 한) 원칙적으로 인증된 형상 (본래 매뉴팩처러가 제작한 형상)에 부합해야 한다. 배기 시스템의 외관은 본 규칙에서 제외된다.

▶ 1. 차량의 사양

1.1 본 규칙에 명시되지 않는 모든 부분은 매뉴팩처러가 인증용으로 제작한 상태이어야 한다.

1.2 동일한 모델명 및 동일한 프레임 VIN(차량 식별 번호) 내의 부품 교환은 본 규정에서 별도로 언급되는 경우 외에는 허용되지 않는다. (예: 휠)

▶ 2. 참가 차량

이 규칙은 프로덕션 모터사이클에만 적용된다. KRTA 기술위원회는 어떤 모터사이클이 해당 클래스에 포함될 것인지를 결정할 권리가 있다.

2.1 SP300

- 200cc 이상 350cc 미만 4 스트로크 2 실린더
- 200cc 이상 400cc 미만 4 스트로크 1 실린더

※ 참고: 이 범위는 KRTA 기술위원회에서 언제든지 수정할 수 있다.

> 3. 최저 중량

3.1 최저 중량은 다음과 같다.

실린더 배기량 최저 중량

1 실린더

200cc - 250cc 115kg

251cc - 300cc 120kg

301cc - 350cc 130kg

351cc - 400cc 135kg

2 실린더

200cc - 250cc 125kg

251cc - 300cc 130kg

301cc - 350cc 135kg

- 3.2 이벤트 기간 중 어떤 때에도 머신 전체 중량(연료탱크 포함)은 최저 중량 이하가 되면 안 된다.
- 3.3 최저 중량에 관한 허용 오차는 설정되지 않는다.

3.4 각 레이스 종료 후 최종 차량 검사 시 선택된 머신의 중량을 레이스를 마친 상태에서 측정한다. 최종 차량 검사의 대상 차량은 레이스를 마친 상태 그대로 최저 중량 규정에 합 격해야 한다. 즉 차량에는 물, 오일 또는 연료를 포함한 일체의 것을 추가할 수 없다. 이 규칙에는 모든 액체(오일, 연료 등)도 포함된다

3.5 프랙티스 및 퀄리파잉 세션 때 머신의 중량 검사를 받도록 라이더에게 요청할 수 있다. 어떠한 경우라도 라이더는 이 요청에 따라야 한다.

3.6 최저 중량을 만족시키기 위해 밸러스트를 사용하는 것이 인정된다. 밸러스트의 사용 과 중량은 사전 차량 검사 시 테크니컬 디렉터에게 보고되어야 한다.

▶ 4. 넘버와 넘버플레이트

4.1 MARC 에 참가하는 각 선수는 챔피언십 전체에 유효한 스타팅 넘버를 선택할 수 있 다. "1"부터 "10"까지의 숫자는 전년도 챔피언십 포인트의 해당 순위자에게만 선택의 권한이 있다.

4.2 SP300 클래스 넘버 플레이트의 바탕색과 문자(숫자)의 색은 흰색 바탕에 검정색 글씨로 한다.

4.3 프론트 넘버의 치수:

• 최소 높이: 140mm

• 최소 너비: 80mm

• 최소 굵기: 25mm

• 최소 자간: 10mm

4.4 사이드 넘버의 치수:

• 최소 높이: 120mm

• 최소 너비: 70mm

• 최소 굵기: 20mm

• 최소 자간: 10mm

4.5 권장 폰트:

- Futura Heavy 및 Futura Heavy Italic
- Univers Bold 및 Univers Bold Italic
- Olivers Med 및 Olivers Med Italic
- Franklin Gothic 및 Franklin Gothic Italic

4.6 라이더에게 할당된 넘버(및 플레이트)는 다음과 같이 머신에 표시되어야 한다

4.6.1 프론트 넘버는 정면의 1개소에 표시한다. 이는 페어링의 정면의 중앙 또는 좌우 어느 쪽에 약간 치우쳐서 표시한다.

4.6.2 사이드 넘버는 차량의 양 측면 또는 차량 하부 페어링의 하부 후방이 권장된다.

4.6.3 넘버는 바탕의 중앙에 있어야 한다.

4.6.4 넘버는 권장 폰트에 명시된 폰트를 사용해야 한다. 그 폰트의 디자인 및 레이아웃을 사용하지 않

는 넘버는 제 1 전의 최소 2주 전까지 테크니컬 디렉터의 사전 승인을 받아야 한다. 모든 숫자는 표준 형식이어야한다

- 4.6.5 모든 외곽선은 대비되는 색상으로 해야 하며 외곽선의 최대 폭은 3mm 로 한다
- 4.6.6 넘버는 오버랩(중복)되면 안된다.
- 4.7 넘버의 주변(외곽선 포함)에서 배경색이 명확히 식별되어야 한다. 반사 또는 미러 타입의 넘버는 인정되지 않는다. 넘버의 시인성에 관해 논란이 생긴 경우 테크니컬 디렉터의 결정이 최종결정이 된다.

> 5. 연료

레이스에 사용되는 모든 연료는 다음의 항목을 모두 만족해야 한다.

- 5.1 모든 머신에 사용되는 연료에 AV 가스(항공기 연료)는 금지된다.
- 5.2 모든 연료는 납 함유량 0.013g/l 이하의 무연 가솔린이여야 하며 리서치옥탄가가 100.0(RON), 모터옥 탄가가 89.0(MON) 이하이어야 한다.
- 5.3 밀도는 기온 15 도에서 0.725g/ml ~ 0.780g/ml 이어야 한다.
- 5.4 모든 연료는 판매 시 혼합되어 있는 상태 이외의 그 어떤 것의 첨가도 인정되지 않는다 단 1.5% 이하의 알코올은 인정한다.
- 5.5 대회특별규칙에 의해 연료의 상표 및 공급 방법이 지정되는 경우 그에 따르는 것을 원칙으로 한다.

> 6. 타이어

- 6.1 타이어는 공식 서플라이어가 있는 경우 공식 서플라이어가 공급하는 타이어만 사용이 가능하며, 어떤 개조나처리(커팅, 그루빙 등)도 금지된다.
- 6.2 타이어는 사이드월에 일반 시판 타이어에 있는 모든 마크 및 사이즈가 표시된 완전한 몰드 타입의 타이어이어 야 한다. 레이스 전의 차량 검사 시 타이어 트레드의 깊이는 트레드(패턴) 전체에서 최소 2.5mm 가 되어야 한다.
- 6.3 타이어는 96%의 포지티브 트레드와 4%의 네거티브 트레드가 있어야 한다
- 6.4 가장자리와 트레드 50%부분의 최대 거리는 35mm 로 한다.

▶ 7. 에진

배기량 변경 불가, 엔진 가공 금지 헤드포팅, 헤드 기계 가공, 연마, 용접 등

7.1 피스톤 변경 가능 7.2 하이 캠 변경 가능 7.3 커넥팅 로드 어셈블리 변경 가능 7.4 헤드 가스켓 변경 가능

▶ 8. 크랭크케이스 엔진 커버 및 기어박스 하우징

- 8.1 공인된 부품이어야 하며 다음과 같은 변경이 허용된다.
- 8.2 충돌 시 지면과 접촉할 수 있는 오일이 포함된 모든 크랭크 케이스 또는 엔진 커버는 추가 커버로 보호되어야 한다.

- 8.3 추가 커버(2 차 커버)는 원래 커버 면적의 1/3 이상을 덮어야 하며 트랙 표면을 손상시키는 날카로운 모서리가 없어야 한다.
- 8.4 이들 커버는 크랭크케이스에 고정되어 있는 원래의 커버 또는 엔진 커버에 최소 3개 이상의 볼트를 사용하여 확실하고 견고하게 장착되어야 한다.
- 8.5 스틱 온(Stick-on) 타입의 커버가 허용되지 않는다.
- 8.6 모든 드레인 플러그는 안전하고 단단하게 세이프티 와이어링 되어있어야 한다.
- 8.7 팀들은 이 커버가 의도한 기능을 수행하도록 견고하게 장착할 책임이 있다.
- 8.8 페어링이 본래 엔진 커버 면적의 1/3 이상을 덮을 경우 2차 커버가 없어도 된다.
- 8.9 테크니컬 디렉터는 안전성을 충족시키지 못하는 어떠한 커버의 사용도 거부할 권리가 있다.

▶ 9. 퓨얼 인젝션 시스템

- 9.1 퓨얼 인젝션 시스템은 공인된 상태를 유지해야 한다.
- 9.2 퓨얼 인젝션 시스템은 스로틀 바디, 퓨얼 인젝터, 가변 흡기 장치, 연료 펌프 및 연료 압력 조절 장치를 나타낸다.
- 9.3 연료 공급 시스템과 점화 시스템을 제어하는 ECU 는 자유이다.

▶ 10. 연료 공급

- 10.1 연료 펌프 및 연료 압력 조절 장치는 공인된 상태로 유지되어야 하며 개조가 허용되지 않는다.
- 10.2 연료 압력은 공인된 상태로 유지되어야 한다..
- 10.3 연료 탱크에서 인젝터까지의 연료 라인(연료 호스, 딜리버리 파이프 어셈블리, 조인트, 클램프, 연료 캐니스터)은 변경할 수 있으며 충돌 손상으로부터 보호되어야 한다.
- 10.4 연료 배출 라인을 교환할 수 있다.
- 10.5 연료 필터를 추가할 수 있다.
- 10.6 퀵 커넥터를 사용하거나 추가할 수 있다. 예) 드라이 브레이크 커넥터

▶ 11. 트랜스미션 및 기어박스

- 11.1 트랜스미션 및 기어박스는 안전을 위한 기어의 재 설계를 제외하고는 변경이 허용되지 않는다.
- 11.2 안전을 위한 구조적인 강도 향상을 목적으로 트랜스미션 기어 재질 변경할 수 있다.
- 11.3기어비와 단수는 공인된 상태를 유지해야 한다.
- 11.4 발로 작동되는 "매뉴얼 트리거 퀵시프터"를 추가할 수 있다.
- 11.5 전자식 또는 유압식 시프터는 허용되지 않으며 변속기는 발을 통해 수동으로 작동해야 한다.
- 11.6 트랜스미션 및 기어박스에 다른 개조는 허용되지 않는다

- 11.7 다음 사항을 제외하고는 개조가 허용되지 않으며 공인된 상태를 유지해야 한다.
- 11.8 앞뒤 스프로킷, 체인 피치 및 체인 사이즈를 변경할 수 있다.
- 11.9 탑 체인 가드가 리어 펜더에 장착되어 있지 않는 한 제거할 수 있다.

▶ 12. 클러치

- 12.1 클러치 시스템(습식, 건식)과 작동방식(케이블, 유압식)은 공인된 상태로 유지해야 한다.
- 12.2 다음과 같은 변경이 허용된다.
- 12.3 백토크 리미터 또는 슬리퍼 클러치로 개조, 변경, 교체할 수 있다.
- 12.4 클러치 스프링은 자유이다.
- 12.5 클러치 스프링 프리로드는 심을 추가하여 변경할 수 있다.
- 12.6 클러치 플레이트는 자유이다.
- 12.7 클러치 케이블은 자유이다.
- 12.8 다른 개조는 허용되지 않는다.

▶ 13. 오일 펌프 및 오일 라인

공인된 상태로 유지해야 한다. 개조는 허용되지 않는다.

▶ 14. 라디에이터, 냉각 시스템 및 오일 쿨러

- 14.1 라디에이터 및 전체 냉각 시스템 내부에는 물만 사용할 수 있다. 첨가제, 부동액, "라디에이터 쿨런트" 또는 다른 액체는 허용되지 않는다.
- 14.2 보호용 메쉬가 오일 쿨러 및 라디에이터 앞에 추가될 수 있다.
- 14.3 본래의 장착 위치와 메인 프레임을 수정하지 않는 한도 내에서 애프터마켓 라디에이터로 교체 및 추가 라디에이터를 추가할 수 있다.
- 14.4 라디에이터를 추가하기 위한 마운팅 브래킷의 추가가 허용된다.
- 14.5 라디에이터 캡은 자유이다.
- 14.6 모터사이클에 추가로 장착되는 플렉시블 오일 커넥션이 있는 오일쿨러의 경우, 모든 오일라인은 보강된 형태로 되어있어야 하고 외부로부터 밀폐되는 재질이어야 하며 순정부품에 부합하는 고품질 표준을 준수해야 한다.
- 14.7 모든 오일 라인 연결은 스웨이지 타입이어야 한다. 스크류 클램프 타입은 금지된다.
- 14.8 오일 라인이 프레임 멤버, 볼트 또는 기타 돌출부에 가깝게 위치하는 경우, 스트랩, 클램프 또는 기타 기계 장치로 고정시켜야 한다.
- 14.9 냉각 시스템의 호스 및 캐치 탱크를 변경할 수 있다.

▶ 15. 에어 박스

- 15.1 에어 박스는 램 에어 시스템을 통합하도록 개조할 수 있다.
- 15.2 에어박스 변경 가능, 에어 퍼낼 장착 가능
- 15.3 에어 필터 엘리먼트는 자유이며 제거가 허용된다.

15.4 모든 모터사이클에는 클로즈드 브리더 시스템이 채용되어 있어야 한다. 모든 오일 브리더 라인은 에어 박스로 연결되어 방출되어야 한다.

15.5 에어 박스 드레인은 밀봉되어야 한다.

▶ 16. 배기 시스템

- 16.1 배기 파이프 및 사일렌서는 자유이다.
- 16.2 안전상의 이유로 배기 파이프 출구의 끝부분은 모서리가 둥근 형태이어야 한다.
- 16.3 라이더의 발 부분 또는 페어링의 방열 부분 이외 배기 시스템의 포장은 허용되지 않는다.
- 16.4 배기 시스템의 음량은 110dB/A 를 초과하지 않아야 한다. 레이스 후에는 +3dB/A 의 허용 오차가 인정된다.

▶ 17. 이그니션 & 엔진 컨트롤 시스템

- 17.1 CPU / ECU 는 자유이다.
- 17.2 ECU 맵 스위치를 추가할 수 있다.
- 17.3 점화 코일은 자유이다.
- 17.4 점화 플러그는 자유이다.
- 17.5 키 / 이그니션 락은 재배치, 교체 또는 제거할 수 있다.
- 17.6 다른 모든 구성품은 공인된 상태를 유지해야 한다. 개조는 허용되지 않는다.

▶ 18. 제네레이터, 얼터네이터, 일렉트릭 스타터

- 18.1 제네레이터 및 충전 시스템은 공인된 상태를 유지해야 한다. 개조는 허용되지 않는다.
- 18.2 스타터는 오프셋 없이 본래 위치에 장착되어야한다.
- 18.3 일렉트릭 스타터는 정상적으로 작동해야하며 항상 엔진을 시동할 수 있어야한다.

파크퍼미에서 엔진시동 시 스타터는 부스트 배터리를 사용하지 않고 엔진을 최소 2초 안에 시동할 수 있도록 적절한 속도로 엔진을 크랭크 해야한다.

세션이 끝난 후 보조 배터리가 모터사이클에 연결되어 있지 않아도 된다.

▶ 19. 와이어링 하네스

와이어링 하네스 및 커넥터는 자유이다.

➤ 20. 배터리

배터리는 자유이지만 모터사이클을 시동할 수 있어야 한다.

▶ 21. 메인 프레임 바디 및 리어 서브 프레임

- 21.1 프레임은 원래 장착된 공인 부품이어야 한다.
- 21.2 크래시 프로텍터는 기존의 포인트를 사용하여 프레임에 장착하거나 휠 액슬의 끝 부분에 장착할 수 있다.
- 21.3 다음과 같은 약간의 수정이 허용된다.
- 21.3.1 거싯 또는 튜브를 추가하여 메인 프레임을 보강할 수 있다.
- 21.3.2 용접은 위의 목적으로 허용된다.
- 21.3.3 승인된 구성 부품(페어링 브래킷, 스티어링 댐퍼 마운트 등)을 장착하기 위한 용도로만 프레임에 드릴로 구멍을 뚫는 것이 인정된다.
- 21.3.4 프레임 바디 양측은 복합 재질로 된 보호 부품으로 감쌀 수 있다.
- 21.3.5 이 프로텍터는 프레임의 형태에 적합해야 한다.
- 21.3.6 엔진 마운트 브래킷 또는 플레이트는 매뉴팩처러가 제작한 본래 상태로 유지되어야 한다.
- 21.3.7 브래킷 또는 마운팅 포인트를 프레임에 용접할 수 없다.
- 21.3.8 볼트로 고정하는 브래킷은 교체, 변경 또는 제거할 수 있다.
- 21.3.9 볼트로 고정하는 액세서리는 제거할 수 있다.
- 21.3.10 시트 브래킷을 추가할 수 있다. 응력을 받지 않는 돌출된 브래킷은 구조물의 안전성에 영향을 주지 않는 경우 제거할 수 있다.
- 21.3.11 서브 프레임은 탈착 식이나 고정식 모두 자유이다.

서브 프레임은 다음과 같이 정의된다:

시트 아래쪽 부분, 리어 시트 카울링 및 연료 탱크의 뒤쪽 부분, 메인 프레임의 쇼크업 소버 상단 마운트 근처 및 스윙암 피벗 근처에 장착되거나 용접되는 삼각 및 트윈 평행 스틸 튜브서브 프레임의 추가, 제거, 개조, 변경이 가능하며 재질은 자유이다.

- 21.3.12 모든 머신에는 프레임 바디에 차량 인식 번호(VIN)가 표시되어야 한다.
- 21.3.13 승인된 규칙에 따라 서브 프레임을 변경하거나 개조하는 경우 원래의 서브 프레임에 위치한 VIN 을 탈거하여 새로운 서브 프레임에 원래 위치에서 30cm 이내의 위치로 재배치 할 수 있으며 검사 중 측면의 동일한 각도에서 볼 수 있어야 한다.

▶ 22. 사전 조립된 스페어 프레임

22.1 이벤트 기간 중 각 라이더는 차량 검사 때 제시하는 프레임에 명확한 라벨에 의해서 식별되는

완전한 차량 1대만 사용할 수 있다. 프레임 교환이 필요한 경우 라이더 또는 팀은 테크니컬 디렉터에게 스페어 프레임의 사용을 신청할 수 있다.

22.2 사전 조립된 스페어 프레임은 테크니컬 디렉터에게 제시하여 재조립 허가를 받아야 한다. 22.3 사전 조립된 스페어 프레임은 다음으로 한정된다.

- 메인 프레임 어셈블리
- 베어링 (스티어링 헤드 상부 및 하부 트리플 클램프, 스윙암 등)
- 스윙암
- 리어 서스펜션 링키지 및 쇼크 업소버
- 상부 및 하부 트리플 클램프
- 와이어링 하니스

22.4 재조립된 차량은 차량 검사원에 의해 주행전 안전 확인을 거쳐 프레임에 새로운 씰이 부착된다.

22.5 이벤트의 나머지 기간 동안 모터사이클은 압수되며 모터사이클의 어떤 부분도 스페어 부품으로 사용할 수 없다.

▶ 23. 완전한 스페어 모터사이클

완전한 스페어 모터사이클로 변경하는 것은 허용되지 않는다.

완전한 모터사이클은 등록된 레이스 차량으로 이식하기 위해 개별적으로 탈거하는 스페어 부품으로 만 사용할 수 있다.

사전 차량 검사에는 1대의 완전한 차량만 제시가 가능하며 프랙티스, 퀄리파잉, 레이스 중의 피트 박스 안에도 1대만이 인정된다.

팀이 손상을 받은 차량이 프레임 교환이 필요하다고 판단했을 경우, 테크니컬 디렉터에게 보고해야 한다. 차량이 전도 또는 사고로 손상된 경우 사전 조립된 스페어 프레임을 사용하여 바이크를 재조립할수 있다.

- 1. 차량의 복원이 완료되면 반드시 차량 안전 검사를 받고 공식적인 씰을 부착(봉인)해야 한다.
- 2. 손상 차량의 씰은 차량 검사원에 의해 파기되고 이 섀시는 이벤트 기간 중 사용할 수 없다.
- 3. 새로운 식별 번호는 테크니컬 디렉터에 의해서 기록된다.
- 4. 교체할 모터사이클을 조립하기 위해 손상된 차량에서 대체 부품을 옮기는 것이 인정된다
- 5. 교체된 차량은 손상이 발생한 프랙티스, 퀄리파잉 또는 레이스 종료 후에만 사용할 수 있다.
- 6. 손상된 차량은 가능한 신속하게 피트 박스에서 꺼내서 피트 박스 밖에 보관해야 한다.

사전 조립된 스페어 프레임이 사용된 뒤 또다시 전도 또는 사고에 의해 프레임의 교환 이 필요한 경우, 아무것도 조립되어 있지 않은 프레임(베어 프레임)으로 작업을 해야한다.

- 8. 테크니컬 디렉터는 그 프레임을 작업 전에 확인하고 승인해야 한다.
- 9. 이 절차에 위배되는 행위는 스포츠 규정에 따라 페널티가 부과된다.

▶ 24. 프론트 포크 및 스티어링 댐퍼

- 24.1 프론트 서스펜션 시스템은 공인된 원래의 부품 이어야 한다.
- 24.2 프론트 포크 내부의 튜브 크기는 공인된 원래의 것과 같아야 한다.
- 24.3 상부와 하부 포크 클램프(트리플 클램프, 포크 브리지)는 본래 매뉴팩처러가 공인 차량용으로 제작한 상태를 유지해야 한다.

24.4 다음과 같은 스탠더드 포크의 내부 부품을 변경할 수 있다. 카트리지 변경 가능

- 24.4.1 심, 댐퍼, 유압 피스톤, 오일 통로, 스프링 및 스페이서.
- 24.4.2 애프터마켓 댐퍼 키트 또는 밸브를 설치할 수 있다.
- 24.4.3 포크 캡은 개조하거나 변경할 수 있다.
- 24.4.4 포크 오일 타입 및 오일 양은 자유이다
- 24.4.5 포크 브리지에 대한 프론트 포크의 돌출량은 자유이다.
- 24.4.6 스티어링 댐퍼를 추가하거나 애프터마켓 댐퍼로 교체할 수 있다.
- 24.4.7 전자식이 아닌 애프터마켓 스티어링 댐퍼가 허용된다. 스티어링 댐퍼는 스티어링 잠금 장치(핸들 스토퍼)로 사용할 수 없다.
- 24.4.8 일반도로용으로 공인된 차량에 적용되지 않은 경우 어떤 전자제어 방식 스티어링 댐퍼도 사용할 수 없다.
- 공인 차량에 적용된 경우 완전한 스탠더드 상태이어야 한다. (모든 기계적 또는 전자적 부 품은 공인된 상태로 유지해야 한다)
- 24.4.9 더스트 씰은 변경하거나 제거할 수 있다.

▶ 25. 리어 서스펜션 유닛

- 25.1 쇼크 업소버 유닛과 스프링은 자유이다.
- 25.2 마운팅 포인트 및 링크/링키지는 공인된 상태를 유지해야 하며 변경은 허용되지 않는다.
- 25.3 전자 제어식 쇼크 업소버는 허용되지 않으며 기존의 쇼크 업소버로 교체해야 한다

▶ 26. 스윙암

26.1 변경 및 가공 불가능

26.2 리어 스윙암은 원래 장착된 공인 부품이어야 한다

26.3 리어 스윙암 피벗 위치는 공인된 원래의 위치를 유지해야 한다.

26.4 스탠더드 바이크에 인서트가 있는 경우, 본래 인서트의 방향/위치가 변경될 수 있지만 인서트를 교체하거나 개조할 수 없다.

26.5 리어 휠 스탠드 브래킷을 용접 또는 볼트로 스윙암에 추가할 수 있다. 브래킷의 모서리는 둥글고 반경을 크게 해야한다. 고정을 위한 스크류는 외부로 돌출되지 않아야 한다.

.본래의 리어 브레이크 캘리퍼를 제위치에 유지하기 위한 고정 시스템 또는 접점을 리어 스 윙암에 추가할 수 있다.

▶ 27. 휠

27.1 휠은 변경할 수 있다. 또 그 관련 파츠는 공인 차량에 장착된 것에서 변경 또는 교환할 수 있다.

27.2 애프터마켓 휠은 알루미늄만 허용된다.

27.3 더블 사이드 스윙암(리어 포크)을 장착하고 있는 차량의 리어 스프로킷은 휠을 탈거했을 때 리어 휠에 남아 있어야 한다.

27.4 베어링, 씰 및 액슬은 공인 차량에 장착된 것에서 변경 또는 교환할 수 있다. 휠 스핀들(액슬)에 티타늄 또는 경합금을 사용하는 것은 금지된다.

27.5 스피드미터 드라이브를 제거하고 스페이서로 교체할 수 있다.

27.6 휠 스페이서 및 칼라는 개조, 추가, 교체할 수 있다.

27.7 휠 밸런스 웨이트는 제거, 변경, 추가할 수 있다.

27.8 모든 인플레이션 밸브를 사용할 수 있다.

27.9 휠의 최대 허용 림 폭은 다음과 같다.

27.10 프론트 휠 최대 폭: 3.0 인치

27.11 리어 휠 최대 폭: 4.5 인치

➤ 28. 브레이크

28.1 공인된 원래의 머신에 ABS 가 있는 경우 제거할 수 있다.

28.2 프론트와 리어의 유압 브레이크 라인은 변경할 수 있다. 두개의 프론트 브레이크 캘리퍼에 대한 라인 분기점은 하부 포크 브리지(하부 트리플 클램프) 위에 설치되어야 한다.

28.3 브레이크 패드는 자유이다.

28.4 장착된 핸드 브레이크 레버 및 풋 브레이크 레버는 자유이다.

28.5 브레이크 패드 잠금 핀은 퀵 체인지 타입으로 변경할 수 있다.

28.6 유압 유체에 대한 열 전달을 감소시키기 위해 캘리퍼에 금속 심을 추가할 수 있다.

- 28.7 에어 스쿠프 또는 덕트의 추가는 허용되지 않는다.
- 28.8 브레이크 패드는 자유이다.
- 28.9 장착된 핸드 브레이크 레버 및 풋 브레이크 레버는 자유이다.
- 28.10 브레이크 패드 잠금 핀은 퀵 체인지 타입으로 변경할 수 있다.
- 28.11 에어 스쿠프 또는 덕트의 추가는 허용되지 않는다.
- 28.12 차량에는 다른 차량과 접촉 시 핸들바 브레이크 레버가 우발적으로 작동하지 않도록 브레이크 레버 프로텍션이 설치되어 있어야 한다.
- 28.13 테크니컬 디렉터는 안전상의 목적을 충족시키지 못하는 어떠한 가드도 거부할 권리가 있다.
- 28.14 프론트와 리어의 브레이크 디스크는 변경할 수 있지만 본래의 캘리퍼 및 마운팅에 적합해야 한다. 하지만 외경과 벤틸레이션 시스템은 공인된 상태로 유지되어야 한다. 공인된 차량에 장착되지 않은 경우 인터널 벤틸레이션 방식의 디스크는 허용되지 않는다.
- 28.15 변경하는 브레이크 디스크는 스틸 재질만 허용된다. (최대 탄소 함량 2.1 wt%)
- 28.16 브레이크 디스크 로터의 두께가 증가할 수는 있지만 디스크는 공인된 브레이크 캘리퍼에 맞게 수정되어야 한다.
- 28.17 브레이크 디스크 로터의 개수(싱글 또는 더블)는 공인된 모터사이클과 동일해야 한다.
- 28.18 프론트와 리어의 브레이크 캘리퍼는 변경할 수 있다.
- 28.19 프론트와 리어 마스터 실린더는 변경할 수 있다.

▶ 29. 핸들바 및 핸드 컨트롤

- 29.1 핸들바를 교체할 수 있다.
- 29.2 핸들바 및 핸드 컨트롤의 위치 변경이 인정된다.
- 29.3 클러치 퍼치, 클러치 레버 및 브레이크 레버는 애프터마켓 모델로 교체할 수 있다. 브레이크 레버 어저스터 장착이 허용된다.
- 29.4 스위치는 변경할 수 있지만 일렉트릭 시동 스위치 및 엔진 스톱 스위치가 핸들 바에 위치해야 한다.
- 29.5 스로틀 어셈블리 및 관련 케이블은 개조하거나 변경할 수 있지만 스로틀 바디 및 스로틀 컨트롤과 커넥션은 공인된 상태를 유지해야 한다.
- 29.6 케이블로 작동하는 스로틀(그립 어셈블리)은 와이어 그립/디멘드 센서에 의해서 작동시킬 때 개방 및 폐쇄의 양쪽 케이블이 모두 장착되어 있어야 한다.
- 29.7 모터사이클에는 작동하고 있는 엔진을 정지시키는 이그니션 킬 스위치 또는 버튼이 핸들바 우측 (그립을 쥐고 있을때 손이 닿는 범위)에 장착되어 있어야 한다. 버튼 또는 스위치는 빨간색이어야 한다.

29.8 스로틀 컨트롤은 손으로 잡지 않았을 때 스스로 닫혀야 한다.

▶ 30. 풋 레스트 및 풋 컨트롤

30.1 풋 레스트 및 풋 컨트롤은 교환 및 재배치 할 수 있지만 브래킷은 본래의 프레임 장착 지점에 장착해야 한다.

30.2 풋 레스트는 고정식이나 접이식 모두 가능하며 접이식의 경우 원래의 위치로 돌아가는 구조여야 한다.

30.3 풋 레스트의 끝부분은 최소 반경 8mm 의 구체로 되어있어야 한다.

30.4 고정식의 금속제 풋 레스트에는 플라스틱, 나일론 또는 이와 동등한 재질로 된 엔드 플러그가 상시 고정되어 있어야 한다.

30.5 테크니컬 디렉터는 안전 목적을 충족하지 못하는 플러그를 거부할 권리가 있다.

➤ 31. 연료 탱크

- 31.1 연료 탱크는 공인된 상태로 유지되어야 하며 변경은 허용되지 않는다.
- 31.2 탱크 패드는 비 영구 접착제로 탱크의 후면에 장착할 수 있다. 이는 폼 패딩 또는 복합 재질로 제작할 수 있다.
- 31.3 연료 탱크 브리더 파이프가 있는 연료 탱크에는 적절한 재질로 제작된 최소 용량 250cc 의 캐치 탱크로 배출되는 논 리턴 밸브가 장착되어야 한다.
- 31.4 연료 캡은 변경할 수 있다. 그것은 닫힌 상태에서 누출이 없어야 한다. 또한 언제든지 실수로 열리지 않도록 안전하게 잠글 수 있어야 한다.

▶ 32. 페어링 / 바디워크

- 32.1 페어링 / 바디워크의 디자인과 모양은 자유이다.
- 32.2 윈드스크린의 디자인과 모양은 자유이다.
- 32.3 카본 파이버 또는 카본 복합 소재의 사용은 허용되지 않는다.
- 32.4 케블라(Kevlar®) 또는 카본의 특정 보강재는 구멍 및 응력을 받는 부위 주변에 부분적으로 허용된다.
- 32.5 원래의 계기판/페어링 브래킷은 변경 또는 교체할 수 있지만 티타늄 및 카본 파이버 또는 이와 유사한 복합소재는 금지된다.
- 32.8 프론트 펜더 / 머드 가드는 원래 부품의 복제품으로 교체할 수 있으며 타이어와의 공간을 확보하기 위해 위쪽으로 위치를 변경할 수 있다.
- 32.9 리어 머드가드를 교체하거나 제거할 수 있다.
- 32.10 체인 가드는 리어 머드가드와 분리시킬 수 있다.

32.11 리어 세이프티 라이트 차량에는 리어에 레드 라이트가 장착 되어 있어야 한다. 이 라이트는 스 위치에서 온/오프 할 수 있도록 하거나 항상 켜져 있어야 하며, 비(웨트 선언 때는 자동적으로 점등이 의무화된다)또는 시계가 나쁜 경우 레이스 디렉션의 지시로 피트 레인 및 코스상에서 점등돼야 한다. 라이트 점등의 확인은 차량 검사로 이뤄진다. 라이트의 방향은 머신의 중심선(차량의 주행 방향)과 병행하고 후방에서 적어도 머신의 중심선에 대해서, 좌우 각각 15°의 각도에서 분명히 보여야 한다.

➤ 33. 시트

- 33.1 시트 베이스 및 시트 관련 바디워크는 교환할 수 있다.
- 33.2 시트 주변 리어 바디워크의 상부를 솔로 시트로 개조할 수 있다.
- 33.3 공인된 시트 잠금 장치(플레이트, 핀, 고무 패드 등)를 제거할 수 있다.

➤ 34. 패스너

- 34.1 스탠더드 패스너는 티타늄 또는 기타 경합금 패스너가 허용되지 않는다는 구체적 언급이 있는 경우를 제외하고 어떤 재질이나 디자인의 패스너로도 교체할 수 있다.
- 34.2 강도와 디자인은 교체되는 본래의 패스너와 같거나 그 이상이어야 한다.
- 34.3 세이프티 와이어를 설치하기 위해 패스너에 드릴로 구멍을 낼 수 있지만 중량 감소를 의도한 개조는 허용되지 않는다.
- 34.4 페어링/바디워크의 패스너는 퀵 디스커넥트 타입으로 변경할 수 있다.
- 34.5 알루미늄 패스너는 구조부가 아닌 부분에만 사용할 수 있다.

▶ 35. 다음 항목은 공인 차량에 장착되어 있는 것에서 변경 또는 교환 할 수 있다

- 35.1 모든 유형의 윤활유, 브레이크 액 또는 서스펜션 오일을 사용할 수 있다.
- 35.2 모든 유형의 점화 플러그가 허용된다.
- 35.3 모든 개스킷 및 개스킷 소재는 자유이다.
- 35.4 외부 도장 및 데칼과 색상 구성은 자유이다.
- 35.5 계기판, 계기판 브래킷 및 관련 케이블
- 35.6 본래 부품이 아닌 것(페어링, 배기 장치, 계기판 등)을 연결하는 브래킷 재질은 티타늄 또는 섬유 강화 복합 재료와 같은 다른 재질로 만들 수 있다.
- 35.7 프레임, 체인 및 풋레스트의 보호 커버는 본래의 공인된 부품을 대체하지 않는 경우 섬유 복합 재료와 같은 다른 재질로 만들 수 있다.
- 35.8 연료 탱크는 난연성 물질로 완전히 채울 수 있다. (오픈 셀 메쉬, 즉 Explosafe)

▶ 36. 다음 항목은 제거할 수 있다.

36.1 계기판 및 계기판 브래킷 및 관련 케이블.

- 36.2 타코미터 및 스피드미터.
- 36.3 라디에이터 팬 및 배선.
- 36.4 열 교환 수온 센서와 서모스탯은 냉각 시스템에서 제거할 수 있다.
- 36.5 여분의 핸들바 스위치.
- 36.6 에어 박스 내 또는 에어 박스 주변에 있는 이미션 컨트롤 장치. (O2 센서, 공기 분사 장치)
- 36.7 리어 펜더와 일체형이 아닌 상단 체인 가드.
- 36.8 리어 서브 프레임의 볼트 온 액세서리.

▶ 37. 다음 항목은 반드시 제거해야 한다.

- 37.1 헤드램프, 리어 램프 및 방향 지시등은 제거해야 하지만 프로파일 및 전면의 외관은 유지해야 한다. 개구부는 적절한 재질로 덮여 있어야 한다.
- 37.2 리어 뷰 미러. (백미러)
- 37.3 혼. (Horn)
- 37.4 번호판 브래킷.
- 37.5 툴 킷.
- 37.6 헬멧 후크 및 러기지 캐리어 후크.
- 37.7 동승자 용 풋 레스트 및 탈착식 마운팅 브래킷(있는 경우).
- 37.8 동승자 용 그랩 레일.
- 37.9 세이프티 바, 센터 및 사이드 스탠드는 제거해야 한다. (장착 브래킷은 남아 있어야 한다)
- 37.10 촉매 변환 장치. (Catalytic convertors)

▶ 38. 다음 항목은 반드시 변경해야 한다.

- 38.1 트랙에 오일이 누출되지 않도록 모든 모터사이클에는 오일 캐치 탱크가 있어야 한다.
- 38.2 브리더 또는 오버 플로우 파이프가 장착된 경우 기존의 배출구를 통해 배출해야 한다.
- 38.3 모든 엔진에는 클로즈드 브리더 시스템이 있어야 한다. 모든 오일 브리더 파이프 / 라인은 오일 캐치 탱크와 연결되어 통과해야 하며 에어 박스로만 배출되어야 한다. 직접적인 대기 배출은 금지된다.
- 38.4 에어 박스 배출구를 밀봉해야 한다.
- 38.5 다음 항목은 반드시 세이프티 와이어링 처리를 해야한다
- 오일 드레인 플러그
- 오일 필러 캡
- 외부 오일 필터
- 모든 휠 액슬 너트 (또는 안전핀으로 적절히 고정) *권장사항

▶ 39. 추가 장비

데이터 로거를 사용할 수 있지만, 원격 측정(텔레메트리)은 허용되지 않는다.

▶ 40. 다양한 모터사이클의 균형

40.1 KRTA 기술위원회는 매 라운드 경기 종료 후 모터사이클의 성능 차이를 검토한다.

40.2 KRTA 기술위원회는 모터사이클 간의 평등을 유지하기 위해 클래스 모터사이클의 균형을 조절할 권리를 갖는다.

40.3 다음의 방법이 포함될 수 있지만 이에 국한되지는 않는다.

- 엔진의 레브 리미트.
- 모터사이클 중량 제한 변경.
- 엔진의 기계적 치수 제한. 예) 밸브 사이즈 또는 밸브 리프트 제한
- 인테이크 사이즈 제한

40.4 균형 조절을 적용하는 규정 결정은 공정한 경쟁을 보장하기 위해 필요하다고 간주되면 KRTA 기술위원회에 의해 언제든지 수정, 추가가 실행될 수 있다.

